Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Outreach
  • Facilities
  • News
Home » New Publication! “Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides”

New Publication! “Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides”

May 30, 2018 By John Heron

New Publication!- S. Sivakumar*, E. Zwier*, P. B. Meisenheimer*, J. T. Heron J. Vis. Exp. (135), e57746, (2018).

Abstract: Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

Full text available from Journal of Visualized Experiments

Share this:

  • Click to email a link to a friend (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Publications

News

  • New Publication! “Composite Spin Hall Conductivity from Non-collinear Antiferromagnetic Order” May 4, 2023
  • New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators” March 27, 2023
  • New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.” November 10, 2022

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our work is multidisciplinary. We employ concepts and tools from the fields of materials science, chemistry, physics and electrical engineering to develop new methods to investigate and engineer … Read More

News

New Publication! “Composite Spin Hall Conductivity from Non-collinear Antiferromagnetic Order”

May 4, 2023 By Matt Webb

New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators”

March 27, 2023 By Matt Webb

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2023 · Website by Super Heron Support

 

Loading Comments...