Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Outreach
  • Facilities
  • News
Home » New Publication! Boron arsenide heterostructures: lattice-matched heterointerfaces and strain effects on band alignments and mobility

New Publication! Boron arsenide heterostructures: lattice-matched heterointerfaces and strain effects on band alignments and mobility

January 17, 2020 By John Heron

Abstract: BAs is a III–V semiconductor with ultra-high thermal conductivity, but many of its electronic properties are unknown. This work applies predictive atomistic calculations to investigate the properties of BAs heterostructures, such as strain effects on band alignments and carrier mobility, considering BAs as both a thin film and a substrate for lattice-matched materials. The results show that isotropic biaxial in-plane strain decreases the band gap independent of sign or direction. In addition, 1% biaxial tensile strain increases the in-plane electron and hole mobilities at 300 K by >60% compared to the unstrained values due to a reduction of the electron effective mass and of hole interband scattering. Moreover, BAs is shown to be nearly lattice-matched with InGaN and ZnSnN2, two important optoelectronic semiconductors with tunable band gaps by alloying and cation disorder, respectively. The results predict type-II band alignments and determine the absolute band offsets of these two materials with BAs. The combination of the ultra-high thermal conductivity and intrinsic p-type character of BAs, with its high electron and hole mobilities that can be further increased by tensile strain, as well as the lattice-match and the type-II band alignment with intrinsically n-type InGaN and ZnSnN2 demonstrate the potential of BAs heterostructures for electronic and optoelectronic devices.

Full Text available from Nature Computational Materials

Share this:

  • Click to email a link to a friend (Opens in new window)
  • Click to print (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Publications

News

  • New Publication! “Composite Spin Hall Conductivity from Non-collinear Antiferromagnetic Order” May 4, 2023
  • New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators” March 27, 2023
  • New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.” November 10, 2022

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our work is multidisciplinary. We employ concepts and tools from the fields of materials science, chemistry, physics and electrical engineering to develop new methods to investigate and engineer … Read More

News

New Publication! “Composite Spin Hall Conductivity from Non-collinear Antiferromagnetic Order”

May 4, 2023 By Matt Webb

New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators”

March 27, 2023 By Matt Webb

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2023 · Website by Super Heron Support