Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Outreach
  • Facilities
  • News
You are here: Home / Publications / New Publication! Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy

New Publication! Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy

August 24, 2020 By Peter Meisenheimer

Abstract: Ultrawide bandgap (UWBG) semiconductors (Eg >3 eV) have tremendous potential for power-electronic applications. The current state-of-the-art UWBG materials such as β-Ga2O3, diamond, and AlN/AlGaN, however, show fundamental doping and thermal conductivity limitations that complicate technological adaption and motivate the search for alternative materials with superior properties. Rutile GeO2 (r-GeO2) has been theoretically established to have an ultrawide bandgap (4.64 eV), high electron mobility, high thermal conductivity (51 W m−1 K−1), and ambipolar dopability. While single-crystal r-GeO2 has been synthesized in bulk, the synthesis of r-GeO2 thin films has not been previously reported but is critical to enable microelectronics applications. Here, we report the growth of single-crystalline r-GeO2 thin films on commercially available R-plane sapphire substrates using molecular beam epitaxy. Due to a deeply metastable glass phase and high vapor pressure of GeO, the growth reaction involves the competition between absorption and desorption as well as rutile and amorphous formation. We control the competing reactions and stabilize the rutile-phase growth by utilizing (1) a buffer layer with reduced lattice misfit to reduce epitaxial strain and (2) the growth condition that allows the condensation of the preoxidized molecular precursor yet provides sufficient adatom mobility. The findings advance the synthesis of single-crystalline films of materials prone to glass formation and provide opportunities to realize promising ultra-wide-bandgap semiconductors.

Full text available from Applied Physics Letters

Share this:

  • Click to print (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Publications

News

  • New Publication! Multiferroic heterostructures for spintronics January 4, 2021
  • New Publication! Property and cation valence engineering in entropy-stabilized oxide thin films October 19, 2020
  • New Publication! Thermal conductivity of rutile germanium dioxide September 17, 2020

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our work is multidisciplinary. We employ concepts and tools from the fields of materials science, chemistry, physics and electrical engineering to develop new methods to investigate and engineer … Read More

News

New Publication! Multiferroic heterostructures for spintronics

January 4, 2021 By Peter Meisenheimer

New Publication! Property and cation valence engineering in entropy-stabilized oxide thin films

October 19, 2020 By Peter Meisenheimer

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2021 · Website by Super Heron Support