Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Outreach
  • Facilities
  • News

New Publication! Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy

August 24, 2020 By John Heron

Abstract: Ultrawide bandgap (UWBG) semiconductors (Eg >3 eV) have tremendous potential for power-electronic applications. The current state-of-the-art UWBG materials such as β-Ga2O3, diamond, and AlN/AlGaN, however, show fundamental doping and thermal conductivity limitations that complicate technological adaption and motivate the search for alternative materials with superior properties. Rutile GeO2 (r-GeO2) has been theoretically established to have an ultrawide bandgap (4.64 eV), high electron mobility, high thermal conductivity (51 W m−1 K−1), and ambipolar dopability. While single-crystal r-GeO2 has been synthesized in bulk, the synthesis of r-GeO2 thin films has not been previously reported but is critical to enable microelectronics applications. Here, we report the growth of single-crystalline r-GeO2 thin films on commercially available R-plane sapphire substrates using molecular beam epitaxy. Due to a deeply metastable glass phase and high vapor pressure of GeO, the growth reaction involves the competition between absorption and desorption as well as rutile and amorphous formation. We control the competing reactions and stabilize the rutile-phase growth by utilizing (1) a buffer layer with reduced lattice misfit to reduce epitaxial strain and (2) the growth condition that allows the condensation of the preoxidized molecular precursor yet provides sufficient adatom mobility. The findings advance the synthesis of single-crystalline films of materials prone to glass formation and provide opportunities to realize promising ultra-wide-bandgap semiconductors.

Full text available from Applied Physics Letters

Filed Under: Publications

New Publication! Oxides and the high entropy regime: A new mix for engineering physical properties

July 14, 2020 By John Heron

Abstract: Historically, the enthalpy is the criterion for oxide materials discovery and design. In this regime, highly controlled thin film epitaxy can be leveraged to manifest bulk and interfacial phases that are non-existent in bulk equilibrium phase diagrams. With the recent discovery of entropy-stabilized oxides, entropy and disorder engineering has been realized as an orthogonal approach. This has led to the nucleation and rapid growth of research on high-entropy oxides – multicomponent oxides where the configurational entropy is large but its contribution to its stabilization need not be significant or is currently unknown. From current research, it is clear that entropy enhances the chemical solubility of species and can realize new stereochemical configurations which has led to the rapid discovery of new phases and compositions. The research has expanded beyond studies to understand the role of entropy in stabilization and realization of new crystal structures to now include physical properties and the roles of local and global disorder. Here, key observations made regarding the dielectric and magnetic properties are reviewed. These materials have recently been observed to display concerted symmetry breaking, metal-insulator transitions, and magnetism, paving the way for engineering of these and potentially other functional phenomena. Excitingly, the disorder in these oxides allows for new interplay between spin, orbital, charge, and lattice degrees of freedom to design the physical behavior. We also provide a perspective on the state of the field and prospects for entropic oxide materials in applications considering their unique characteristics.

Read the full text open-access in MRS Advances

Filed Under: Publications

New publication! Tunable magnetoelastic anisotropy in epitaxial (111) Tm3Fe5O12 thin films

April 21, 2020 By John Heron

Abstract: Ferrimagnetic insulators with perpendicular magnetic anisotropy are of particular interest for spintronics due to their ability to mitigate current shunting in spin–orbit torque heterostructures and enable low switching energy, high-density storage magnetic devices. Rare earth iron garnet Tm3Fe5O12 (TmIG) is one such material where prior studies have shown that the negative magnetostriction coefficient and isotropic in-plane tensile strain enable the magnetoelastic anisotropy to overcome the demagnetization energy and stabilize perpendicular magnetic anisotropy. However, the investigation of the tunability of the magnetoelastic anisotropy between thin films that possess perpendicular magnetization and quantification of the magnetoelastic constants has not been reported. Here, we quantify the evolution of magnetic anisotropy in (111)-oriented, epitaxial, 17 nm thick thin films of TmIG using a systematic variation of in-plane epitaxial strain (ranging 0.49%–1.83%) imposed by a suite of commercially available garnet substrates. Within the confines of the imposed strain range and deposition condition, the distortion from cubic symmetry is found to be approximately linear within the in-plane strain. The magnetic anisotropy field can be tuned by a factor of 14 in this strain range. The magnetoelastic anisotropy constant, B2, is found to be approximately constant (∼2500 kJ m−3) and more than 2× larger than the reported bulk value (∼1200 kJ m−3) for a cubic distortion between 90.17° and 90.71°. B2 is found to decrease at cubic distortions of 90.74° and larger. Our results highlight strain engineering, and its limitations, for control of perpendicular magnetic anisotropy.

The full text is available as an editor’s choice article from Journal of Applied Physics

Filed Under: Publications

Peter wins the Rackham Predoctoral Fellowship!

April 1, 2020 By John Heron

The Rackham Predoctoral Fellowship supports outstanding doctoral students who are actively working on dissertation research and writing. It seeks to support students working on dissertations that are unusually creative, ambitious and impactful.

Peter’s research thrust is to find new materials and design devices that can mitigate heating from electronics, saving a tremendous amount of energy in the long run. To this end, his research explores the frontiers of materials synthesis to engineer new, sustainable, non-volatile devices with unprecedented performance. His research centers around discovering new ferroic states in disorder-driven materials. This includes synthesis and characterization of new, magnetic, entropy-stabilized oxides and device implementation and optimization of existing composite multiferroic systems. Through these projects he has experience with many aspects of materials design, ranging from material deposition and basic characterization to nanolithography and coupled electronic measurements.

See the press release here: https://mse.engin.umich.edu/about/news/three-mse-students-win-rackham-predoctoral-awards

Filed Under: Awards

Sieun and Peter give talks at EMA 2020

January 31, 2020 By John Heron

Sieun and Peter both gave contributed talks on entropy-stabilized oxides at ACerS EMA 2020 in Orlando last week.

Tunability of native defect density through local configuration-controlled disorder in entropy-stabilized oxides
S. Chae
Abstract: Entropic stabilization has become a strategy to create new oxide materials and novel properties, however, achieving an atomistic understanding of these properties has been challenged by the local compositional and structural disorder that underlies their fundamental structure-property relationships. Here, we combine high-throughput atomistic calculations, machine-learning algorithms, and experimental characterization to investigate the role of local configurational and structural disorder on the thermodynamics of intrinsic point defects in (MgCoNiCuZn)O-based entropy-stabilized oxides (ESOs) and their influence on the electrical properties. From theory, we find that the cation-vacancy formation energy decreases with increasing local tensile strain, while oxygen-vacancy formation depends on the local structural distortion associated with the local configuration of chemical species. Through relatively small changes in the mole fraction of cations, the equilibrium defect density can be tuned by over two orders of magnitude. Vacancies in ESOs exhibit deep thermodynamic transition levels leading to transport via variable range hopping. Our results motivate tuning local structural distortions by local alloy composition as an engineering principle to enable controlled defect formation in multi-component oxides.

Electronic and magnetic interplay in entropy stabilized oxide thin films
P. Meisenheimer
Abstract:
A unique benefit to entropic stabilization is the increased solubility of elements, which opens a broad compositional space with subsequent local A unique benefit to entropic stabilization is the increased solubility of elements, which opens a broad compositional space with subsequent local chemical and structural disorder resulting from different atomic sizes and preferred coordinations of the constituents. In the antiferromagnetic entropy-stabilized oxides studied here, we see that by tuning the chemistry, and thus the concentration of local structural distortions, we can either induce or reclaim a large degree of frustration in the magnetic lattice of the material. As the large dielectric response of these materials may be strongly linked to their structure, here we study the interplay of electronic and magnetic functional responses in entropy-stabilized oxides. Our results reveal that the unique characteristics of entropy stabilized materials can be utilized to engineer and enhance magnetic functional phenomena in oxide thin films, as well as offer a powerful platform for the study of defects and functional properties.

Filed Under: Conferences

  • « Previous Page
  • 1
  • 2
  • 3
  • 4
  • …
  • 14
  • Next Page »

News

  • New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators” March 27, 2023
  • New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.” November 10, 2022
  • New Publication! “Nanophotonic control of thermal emission under extreme temperatures in air” September 29, 2022

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our work is multidisciplinary. We employ concepts and tools from the fields of materials science, chemistry, physics and electrical engineering to develop new methods to investigate and engineer … Read More

News

New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators”

March 27, 2023 By Matt Webb

New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.”

November 10, 2022 By Matt Webb

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2023 · Website by Super Heron Support

 

Loading Comments...