Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Outreach
  • Facilities
  • News

Peter gives a talk at MS&T2019 in Portland, OR

September 30, 2019 By John Heron

The interplay of electronic and magnetic functionalities in entropy-stabilized oxides

Abstract: A unique benefit to entropic stabilization is the increased solubility of elements, which opens a broad compositional space with subsequent local chemical and structural disorder resulting from different atomic sizes and preferred coordinations of the constituents. In the antiferromagnetic entropy-stabilized oxides studied here, we see that by tuning the chemistry, and thus the concentration of local structural distortions, we can either induce or reclaim a large degree of frustration in the magnetic lattice of the material. As the large dielectric response of these materials may be strongly linked to their structure, here we study the interplay of electronic and magnetic functional responses in entropy-stabilized oxides. Our results reveal that the unique characteristics of entropy stabilized materials can be utilized to engineer and enhance magnetic functional phenomena in oxide thin films, as well as offer a powerful platform for the study of defects and functional properties.

Filed Under: Conferences

Sieun gives a talk at ICDS-30 as a Corbett prize finalist

August 6, 2019 By John Heron

Abstract: Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Rutile germanium oxide (r-GeO2) is a promising UWBG (4.68 eV) material, yet has not been explored for semiconducting applications. Using hybrid density functional theory, we demonstrate r-GeO2 to be an alternative UWBG material that can be ambipolarly doped.

Filed Under: Conferences

Nguyen gives a talk at MRS

April 22, 2019 By John Heron

Transition metal dichalcogenide (TMD) monolayers, such as WSe2, WS2, MoSe2, and MoS2, possess distinct physical properties due to the strong coupling between spin and valley degrees of freedom.(1, 2) As monolayer TMDs have a direct bandgap lying in visible range, they have been studied extensively by optical methods.(2, 3) Heterostructures of monolayer TMDs with other functional materials are currently attracting significant attention due to the opportunities to access and utilize their spin-valley degrees of freedom through electrical means.(4) For instance, TMD-ferromagnet heterostructures have been employed recently to study spin current generation in TMDs. (4, 5) The quality of atomically thin TMDs, however, is strongly affected by deposition techniques of metallic layers and have not been fully investigated.(6) In this work, we report the fabrication of Pt/Co multilayer using pulsed laser deposition (PLD) on monolayer WSe2 grown bymetalorganic chemical vapor deposition (MOCVD) on single crystalline (0001)-oriented Al2O3 substrates. PLD is a plasma based deposition technique capable of tuning of kinetic and thermodynamic conditions over an expanse range to elucidate and control fundamental structure-property relationships across a wide variety of material classes. (7)Using Raman Spectroscopy, we monitor deposition induced damage on monolayer WSe2. The pressure of Argon process gas is found to suppress deposition induced defects in WSe2, which indicates that the primary source of defect generation comes from ion bombardment. Further, we report on magnetometry and spin torque measurements of our WSe2-ferromagnet heterostructures and demonstrate the generation of spin current from TMD layer.  We anticipate that our results will advance the electrical investigation of spin-valley and spin generation phenomena in 2D hybrid heterostructures for spintronics.

Filed Under: Conferences

Peter and Sieun give talks at EMA 2019

January 30, 2019 By John Heron

This past week, both Sieun and Peter gave talks at the annual American Ceramic Society Electronic materials and applications (EMA) conference on defect formation and magnetic disorder in entropy stabilized oxides.

Defect and disorder driven dielectric properties of entropy-stabilized oxides.

Abstract: Entropy-stabilized oxides (ESO) are a solid solution of five or more binary oxides in a single lattice, stabilized by the large configurational entropy from cationic disorder. Due to their tunable chemical heterogeneity and intrinsic disorder, ESO are expected to demonstrate novel functional behavior. Point defects in oxides, however, can have a strong influence on functional properties, yet an understanding of point defects in ESO is unknown. Here we present on a theoretical and experimental investigation of point defects and disorder in (MgCoNiCuZn)O-based ESO using density functional theory (DFT) and dielectric measurements. We theoretically predicted that the thermodynamic stability of vacancies in ESO strongly depends on their nearest-neighbor configuration, indicating that the types and concentrations of defects can be tuned by the composition of cations, particularly Cu. Our calculated dielectric constant varies depending on vacancy and cation composition. To experimentally characterize these materials, we have integrated single crystalline entropy-stabilized oxide thin films into vertical capacitor devices by using MgO/SrTiO3 buffered conductive Si substrates and performed dielectric testing over a wide range of frequencies. We varied the composition of the films and observed the effect of local lattice distortion that arises from the composition of Cu on the dielectric behavior of ESO.

Magnetic Frustration Engineering Through Stereochemical Disorder in Single Crystalline Entropy-Stabilized Oxides

Abstract: A unique benefit to entropic stabilization is the increased solubility of elements, which opens a broad compositional space with subsequent local chemical and structural disorder resulting from different atomic sizes and preferred coordinations of the constituents. It is unknown, however, to what degree this structural disorder contributes to material functionalities. In the antiferromagnetic entropy-stabilized oxides studied here, we see that by tuning the concentration of local structural frustrations caused by Jahn-Teller active cations, we induce or reclaim a large degree of disorder in the magnetic lattice of the material. This effect can be utilized to tune the anisotropy and magnetic structure of the oxide to approach that of an isotropic spin glass, yet still in a single crystalline material. Our results reveal that the unique characteristics of entropy stabilized materials can be utilized to realize novel magnetism in oxide thin films.


Filed Under: Conferences

Peter gives a talk at MS&T 2018

October 15, 2018 By John Heron

Peter gives a talk on the magnetism of entropy-stabilized oxides at MS&T 2018 in Columbus, OH, entitled Structurally Driven Magnetic Disorder in Entropy-Stabilized Oxides.

Abstract: A unique benefit to entropic stabilization is the increased solubility of elements, which opens a broad compositional space with subsequent local chemical and structural disorder resulting from different atomic sizes and preferred coordinations of the constituents. In the antiferromagnetic entropy-stabilized oxides studied here, we see that by tuning the chemistry, and thus the concentration of local structural distortions, we can either induce or reclaim a large degree of frustration in the magnetic lattice of the material. This effect can then be engineered to enhance the strength of the magnetic exchange field by a factor of 10x in ferromagnetic/antiferromagnetic heterostructures, when compared to a “normal” antiferromagnetic oxide, such as CoO. Our results reveal that the unique characteristics of entropy stabilized materials can be utilized to engineer and enhance magnetic functional phenomena in oxide thin films, as well as offer a powerful platform for the study of defects and functional properties.

Filed Under: Conferences

  • « Previous Page
  • 1
  • 2

News

  • New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators” March 27, 2023
  • New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.” November 10, 2022
  • New Publication! “Nanophotonic control of thermal emission under extreme temperatures in air” September 29, 2022

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our work is multidisciplinary. We employ concepts and tools from the fields of materials science, chemistry, physics and electrical engineering to develop new methods to investigate and engineer … Read More

News

New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators”

March 27, 2023 By Matt Webb

New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.”

November 10, 2022 By Matt Webb

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2023 · Website by Super Heron Support

 

Loading Comments...