Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Outreach
  • Facilities
  • News

New Publication! Multiferroic heterostructures for spintronics

January 4, 2021 By Peter Meisenheimer

Abstract: For next-generation technology, magnetic systems are of interest due to the natural ability to store information and, through spin transport, propagate this information for logic functions. Controlling the magnetization state through currents has proven energy inefficient. Multiferroic thin-film heterostructures, combining ferroelectric and ferromagnetic orders, hold promise for energy efficient electronics. The electric field control of magnetic order is expected to reduce energy dissipation by 2–3 orders of magnitude relative to the current state-of-the-art. The coupling between electrical and magnetic orders in multiferroic and magnetoelectric thin-film heterostructures relies on interfacial coupling though magnetic exchange or mechanical strain and the correlation between domains in adjacent functional ferroic layers. We review the recent developments in electrical control of magnetism through artificial magnetoelectric heterostructures, domain imprint, emergent physics and device paradigms for magnetoelectric logic, neuromorphic devices, and hybrid magnetoelectric/spin-current-based applications. Finally, we conclude with a discussion of experiments that probe the crucial dynamics of the magnetoelectric switching and optical tuning of ferroelectric states towards all-optical control of magnetoelectric switching events.

Full Text available from Physical Sciences Reviews

Filed Under: Publications

New Publication! Property and cation valence engineering in entropy-stabilized oxide thin films

October 19, 2020 By Peter Meisenheimer

Abstract: We present data for epitaxial thin films of the prototypical entropy-stabilized oxide (ESO), Mg0.2Ni0.2Co0.2Cu0.2Zn0.2O, that reveals a systematic trend in lattice parameter and properties as a function of substrate temperature during film growth with negligible changes in microstructure. A larger net Co valence in films grown at substrate temperatures below 350 °C results in a smaller lattice parameter, a smaller optical band gap, and stronger magnetic exchange bias. Observation of this phenomena suggests a complex interplay between thermodynamics and kinetics during ESO synthesis; specifically thermal history, oxygen chemical potential, and entropy. In addition to the compositional degrees of freedom available to ESO systems, subtle nuances in atomic structure at constant metallic element proportions can strongly influence properties, simultaneously complicating physical characterization and providing opportunities for property tuning and development.

Full text available from Physical Review Materials

Filed Under: Publications

New Publication! Thermal conductivity of rutile germanium dioxide

September 17, 2020 By Peter Meisenheimer

Abstract: Power electronics seek to improve power conversion of devices by utilizing materials with a wide bandgap, high carrier mobility, and high thermal conductivity. Due to its wide bandgap of 4.5 eV, β-Ga2O3 has received much attention for high-voltage electronic device research. However, it suffers from inefficient thermal conduction that originates from its low-symmetry crystal structure. Rutile germanium oxide (r-GeO2) has been identified as an alternative ultra-wide-bandgap (4.68 eV) semiconductor with a predicted high electron mobility and ambipolar dopability; however, its thermal conductivity is unknown. Here, we characterize the thermal conductivity of r-GeO2 as a function of temperature by first-principles calculations, experimental synthesis, and thermal characterization. The calculations predict an anisotropic phonon-limited thermal conductivity for r-GeO2 of 37 W m−1 K−1 along the a direction and 58 W m−1 K−1 along the c direction at 300 K where the phonon-limited thermal conductivity predominantly occurs via the acoustic modes. Experimentally, we measured a value of 51 W m−1 K−1 at 300 K for hot-pressed, polycrystalline r-GeO2 pellets. The measured value is close to our directionally averaged theoretical value, and the temperature dependence of ∼1/T is also consistent with our theory prediction, indicating that thermal transport in our r-GeO2 samples at room temperature and above is governed by phonon scattering. Our results reveal that high-symmetry UWBG materials, such as r-GeO2, may be the key to efficient power electronics.

Full text available from Applied Physics Letters

Filed Under: Publications

New Publication! Bulk-like dielectric and magnetic properties of sub 100 nm thick single crystal Cr2O3 films on an epitaxial oxide electrode

September 8, 2020 By Peter Meisenheimer

Abstract: The manipulation of antiferromagnetic order in magnetoelectric Cr2O3 using electric field has been of great interest due to its potential in low-power electronics. The substantial leakage and low dielectric breakdown observed in twinned Cr2O3 thin films, however, hinders its development in energy efficient spintronics. To compensate, large film thicknesses (250 nm or greater) have been employed at the expense of device scalability. Recently, epitaxial V2O3 thin film electrodes have been used to eliminate twin boundaries and significantly reduce the leakage of 300 nm thick single crystal films. Here we report the electrical endurance and magnetic properties of thin (less than 100 nm) single crystal Cr2O3 films on epitaxial V2O3 buffered Al2O3 (0001) single crystal substrates. The growth of Cr2O3 on isostructural V2O3 thin film electrodes helps eliminate the existence of twin domains in Cr2O3 films, therefore significantly reducing leakage current and increasing dielectric breakdown. 60 nm thick Cr2O3 films show bulk-like resistivity (~ 1012 Ω cm) with a breakdown voltage in the range of 150–300 MV/m. Exchange bias measurements of 30 nm thick Cr2O3 display a blocking temperature of ~ 285 K while room temperature optical second harmonic generation measurements possess the symmetry consistent with bulk magnetic order.

Full text available from Nature Scientific Reports

Filed Under: Publications

New Publication! Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy

August 24, 2020 By Peter Meisenheimer

Abstract: Ultrawide bandgap (UWBG) semiconductors (Eg >3 eV) have tremendous potential for power-electronic applications. The current state-of-the-art UWBG materials such as β-Ga2O3, diamond, and AlN/AlGaN, however, show fundamental doping and thermal conductivity limitations that complicate technological adaption and motivate the search for alternative materials with superior properties. Rutile GeO2 (r-GeO2) has been theoretically established to have an ultrawide bandgap (4.64 eV), high electron mobility, high thermal conductivity (51 W m−1 K−1), and ambipolar dopability. While single-crystal r-GeO2 has been synthesized in bulk, the synthesis of r-GeO2 thin films has not been previously reported but is critical to enable microelectronics applications. Here, we report the growth of single-crystalline r-GeO2 thin films on commercially available R-plane sapphire substrates using molecular beam epitaxy. Due to a deeply metastable glass phase and high vapor pressure of GeO, the growth reaction involves the competition between absorption and desorption as well as rutile and amorphous formation. We control the competing reactions and stabilize the rutile-phase growth by utilizing (1) a buffer layer with reduced lattice misfit to reduce epitaxial strain and (2) the growth condition that allows the condensation of the preoxidized molecular precursor yet provides sufficient adatom mobility. The findings advance the synthesis of single-crystalline films of materials prone to glass formation and provide opportunities to realize promising ultra-wide-bandgap semiconductors.

Full text available from Applied Physics Letters

Filed Under: Publications

  • 1
  • 2
  • 3
  • …
  • 14
  • Next Page »

News

  • New Publication! Multiferroic heterostructures for spintronics January 4, 2021
  • New Publication! Property and cation valence engineering in entropy-stabilized oxide thin films October 19, 2020
  • New Publication! Thermal conductivity of rutile germanium dioxide September 17, 2020

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our work is multidisciplinary. We employ concepts and tools from the fields of materials science, chemistry, physics and electrical engineering to develop new methods to investigate and engineer … Read More

News

New Publication! Multiferroic heterostructures for spintronics

January 4, 2021 By Peter Meisenheimer

New Publication! Property and cation valence engineering in entropy-stabilized oxide thin films

October 19, 2020 By Peter Meisenheimer

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2021 · Website by Super Heron Support