Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Outreach
  • Facilities
  • News

Sieun gives a talk at ICDS-30 as a Corbett prize finalist

August 6, 2019 By John Heron

Abstract: Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Rutile germanium oxide (r-GeO2) is a promising UWBG (4.68 eV) material, yet has not been explored for semiconducting applications. Using hybrid density functional theory, we demonstrate r-GeO2 to be an alternative UWBG material that can be ambipolarly doped.

Filed Under: Conferences

New Article!

May 17, 2019 By John Heron

“Today, materials scientists and engineers play a critical role in the technological evolution of our society, from using advanced computational modeling to guide the development of lighter and stronger metal alloys, to synthesizing self-assembled nanostructures for energy efficient optoelectronics. The trouble is, unlike mechanical or electrical engineering, students are usually not exposed to materials science until well into higher education, and oftentimes never truly learn what it is.
Since 2017, UM materials science graduate students have been teaming up with engineering diversity and educational outreach experts, physical science education specialists, museum curators, and local teachers to develop and implement materials science curriculum and demonstrations targeting K-12 classes.”

full text available from Bulletin of the American Ceramic Society

Filed Under: Publications

Nguyen gives a talk at MRS

April 22, 2019 By John Heron

Transition metal dichalcogenide (TMD) monolayers, such as WSe2, WS2, MoSe2, and MoS2, possess distinct physical properties due to the strong coupling between spin and valley degrees of freedom.(1, 2) As monolayer TMDs have a direct bandgap lying in visible range, they have been studied extensively by optical methods.(2, 3) Heterostructures of monolayer TMDs with other functional materials are currently attracting significant attention due to the opportunities to access and utilize their spin-valley degrees of freedom through electrical means.(4) For instance, TMD-ferromagnet heterostructures have been employed recently to study spin current generation in TMDs. (4, 5) The quality of atomically thin TMDs, however, is strongly affected by deposition techniques of metallic layers and have not been fully investigated.(6) In this work, we report the fabrication of Pt/Co multilayer using pulsed laser deposition (PLD) on monolayer WSe2 grown bymetalorganic chemical vapor deposition (MOCVD) on single crystalline (0001)-oriented Al2O3 substrates. PLD is a plasma based deposition technique capable of tuning of kinetic and thermodynamic conditions over an expanse range to elucidate and control fundamental structure-property relationships across a wide variety of material classes. (7)Using Raman Spectroscopy, we monitor deposition induced damage on monolayer WSe2. The pressure of Argon process gas is found to suppress deposition induced defects in WSe2, which indicates that the primary source of defect generation comes from ion bombardment. Further, we report on magnetometry and spin torque measurements of our WSe2-ferromagnet heterostructures and demonstrate the generation of spin current from TMD layer.  We anticipate that our results will advance the electrical investigation of spin-valley and spin generation phenomena in 2D hybrid heterostructures for spintronics.

Filed Under: Conferences

New Publication:! “Rutile GeO2: An ultrawide-band-gap semiconductor with ambipolar doping”

March 19, 2019 By John Heron

New Publication! S. Chae, , J. Lee, K. A. Mengle, J. T. Heron, and E. Kioupakis Appl. Phys. Lett. 114, 102104 (2019)

Abstract: Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with the increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with the increasing bandgap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.

Full text available from Applied Physics Letters

Filed Under: Publications

Prof. Heron awarded the 2018 NSF CAREER award!

February 26, 2019 By John Heron

The award comes from the Ceramics program within the NSF Division of Materials Research. The project is to focus on the understanding the roles of defects and disorder on the dielectric properties of entropy-stabilized thin film materials.

Filed Under: Awards

  • « Previous Page
  • 1
  • …
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • 19
  • Next Page »

News

  • New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators” March 27, 2023
  • New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.” November 10, 2022
  • New Publication! “Nanophotonic control of thermal emission under extreme temperatures in air” September 29, 2022

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our work is multidisciplinary. We employ concepts and tools from the fields of materials science, chemistry, physics and electrical engineering to develop new methods to investigate and engineer … Read More

News

New Publication! “Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators”

March 27, 2023 By Matt Webb

New Publication! “Geometric defects induced by strain relaxation in thin film oxide superlattices.”

November 10, 2022 By Matt Webb

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2023 · Website by Super Heron Support

 

Loading Comments...