Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News
Home » New publication! Tunable magnetoelastic anisotropy in epitaxial (111) Tm3Fe5O12 thin films

New publication! Tunable magnetoelastic anisotropy in epitaxial (111) Tm3Fe5O12 thin films

April 21, 2020 By John Heron

Abstract: Ferrimagnetic insulators with perpendicular magnetic anisotropy are of particular interest for spintronics due to their ability to mitigate current shunting in spin–orbit torque heterostructures and enable low switching energy, high-density storage magnetic devices. Rare earth iron garnet Tm3Fe5O12 (TmIG) is one such material where prior studies have shown that the negative magnetostriction coefficient and isotropic in-plane tensile strain enable the magnetoelastic anisotropy to overcome the demagnetization energy and stabilize perpendicular magnetic anisotropy. However, the investigation of the tunability of the magnetoelastic anisotropy between thin films that possess perpendicular magnetization and quantification of the magnetoelastic constants has not been reported. Here, we quantify the evolution of magnetic anisotropy in (111)-oriented, epitaxial, 17 nm thick thin films of TmIG using a systematic variation of in-plane epitaxial strain (ranging 0.49%–1.83%) imposed by a suite of commercially available garnet substrates. Within the confines of the imposed strain range and deposition condition, the distortion from cubic symmetry is found to be approximately linear within the in-plane strain. The magnetic anisotropy field can be tuned by a factor of 14 in this strain range. The magnetoelastic anisotropy constant, B2, is found to be approximately constant (∼2500 kJ m−3) and more than 2× larger than the reported bulk value (∼1200 kJ m−3) for a cubic distortion between 90.17° and 90.71°. B2 is found to decrease at cubic distortions of 90.74° and larger. Our results highlight strain engineering, and its limitations, for control of perpendicular magnetic anisotropy.

The full text is available as an editor’s choice article from Journal of Applied Physics

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook

Related

Filed Under: Publications

News

  • New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping” March 28, 2025
  • New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots” January 31, 2025
  • New Publication! “Geometric effects in the measurement of the remanent ferroelectric polarization at the nanoscale”  January 14, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots”

January 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: [email protected]
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support