Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News

New Publication! “Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures”

October 17, 2017 By John Heron

New Publication!- Meisenheimer, P. B., Kratofil, T. J. & Heron, J. T. Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures. Sci. Rep. 7, 13344 (2017).

Abstract: Entropy-stabilized materials are stabilized by the configurational entropy of the constituents, rather than the enthalpy of formation of the compound. A unique benefit to entropy-stabilized materials is the increased solubility of elements, which opens a broad compositional space, with subsequent local chemical and structural disorder resulting from different atomic sizes and preferred coordinations of the constituents. Known entropy-stabilized oxides contain magnetically interesting constituents, however, the magnetic properties of the multi-component oxide have yet to be investigated. Here we examine the role of disorder and composition on the exchange anisotropy of permalloy/(Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O heterostructures. Anisotropic magnetic exchange and the presence of a critical blocking temperature indicates that the magnetic order of the entropy-stabilized oxides considered here is antiferromagnetic. Changing the composition of the oxide tunes the disorder, exchange field and magnetic anisotropy. Here, we exploit this tunability to enhance the strength of the exchange field by a factor of 10x at low temperatures, when compared to a permalloy/CoO heterostructure. Significant deviations from the rule of mixtures are observed in the structural and magnetic parameters, indicating that the crystal is dominated by configurational entropy. Our results reveal that the unique characteristics of entropy-stabilized materials can be utilized and tailored to engineer magnetic functional phenomena in oxide thin films.

Full text available from Nature Scientific Reports.

Filed Under: Publications

New publication! – “Strain-Mediated Magnetization Reversal Through Spin-Transfer Torque”

July 20, 2017 By John Heron

New publication!- N. Kani, J. T. Heron, A. Naeemi, IEEE Trans. Mag. Accepted (2017).

Abstract:
Recent experiments have shown the ability to introduce an anisotropy energy to the energy landscape of a thin-film nanomagnet through the use of mechanical strain. Assuming this strain-induced anisotropy is large enough, the low-energy state of the nanomagnet is altered and can be used to initialize the magnetization along a given axis. Utilizing this effect, we propose a more energy efficient method of nanomagnet reversal through spin-transfer torque (STT). This is accomplished by first initializing the magnetization to a high-energy state, and then applying a short current pulse to nudge the magnetization in the appropriate energy basin. Using extensive numerical simulations, we qualitatively analyze this type of reversal and find the optimal parameters for reliable functionality while in the presence of thermal noise. We demonstrate that despite negating the initial portion of nominal STT reversal, where the STT must fight against the damping torque of the initial energy-basin, the magnitude of spin current required for our proposed strain-mediated reversal is equivalent to the nominal case. However, the strain-meditated reversal is beneficial by minimizing the spin-current pulsewidth necessary for reliable operation allowing for large energy savings. Assuming the strain-anisotropy is significantly larger than the nanomagnet’s internal free-axis anisotropy, strain-mediated reversals offer a 10 energy reduction over nominal STT reversals.

The full manuscript is available from IEEE Transactions on Magnetics.

Filed Under: Publications

  • « Previous Page
  • 1
  • …
  • 8
  • 9
  • 10

News

  • New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping” March 28, 2025
  • New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots” January 31, 2025
  • New Publication! “Geometric effects in the measurement of the remanent ferroelectric polarization at the nanoscale”  January 14, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots”

January 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support

 

Loading Comments...