Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News
Home » New publication! – “Spin-Hall Torques Generated by Rare-Earth (Lanthanide) Thin Films”

New publication! – “Spin-Hall Torques Generated by Rare-Earth (Lanthanide) Thin Films”

February 14, 2017 By John Heron

New publication! – Neal Reynolds, Priyamvada Jadaun, John T. Heron, Colin L. Jermain, Jonathan Gibbons, Robyn Collette, R. A. Buhrman, Darrell G. Schlom and D. C. Ralph, “Spin-Hall Torques Generated by Rare-Earth (Lanthanide) Thin Films” Phys. Rev. B. 95, 064412 (2017).

Abstract:
We report an initial experimental survey of spin Hall torques generated by the rare-earth metals Gd, Dy, Ho, and Lu, along with comparisons to first-principles calculations of their spin Hall conductivities. Using spin torque ferromagnetic resonance (ST-FMR) measurements and dc-biased ST-FMR, we estimate lower bounds for the spin Hall torque ratio, ξSH, of ≈0.04 for Gd, ≈0.05 for Dy, ≈0.14 for Ho, and ≈0.014 for Lu. The variations among these elements are qualitatively consistent with results from first principles [density-functional theory (DFT) in the local density approximation with a Hubbard-U correction]. The DFT calculations indicate that the spin Hall conductivity is enhanced by the presence of the partially filled f orbitals in Dy and Ho, which suggests a strategy to further strengthen the contribution of the f orbitals to the spin Hall effect by shifting the electron chemical potential.

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook

Related

Filed Under: Uncategorized

News

  • Intel Awards John T. Heron and lab with Outstanding Researcher Award! July 31, 2025
  • New Publication! “Investigating Vibrational Modes in High Entropy Oxides using Electron Energy Loss Spectroscopy” July 31, 2025
  • New Publication! “Endotaxial Stabilization of 2D 1T-TaS2 Charge Density Waves via In-Situ Electrical Current Biasing” July 31, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

Intel Awards John T. Heron and lab with Outstanding Researcher Award!

July 31, 2025 By Avery-Ryan Ansbro

New Publication! “Investigating Vibrational Modes in High Entropy Oxides using Electron Energy Loss Spectroscopy”

July 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support