New Publication!- R. Iraei, N. Kani, S. Dutta, D. E. Nikonov, S. Manipatruni, I. A. Young, J. T. Heron, and A. Naeemi, Clocked Magnetostriction-Assisted Spintronic Device Design and Simulation, IEEE Trans. Electronic Devices 65, 5(2017).
Abstract: We propose a heterostructure device comprised of magnets and piezoelectrics, which significantly improves the delay and the energy dissipation of an all-spin logic (ASL) device. This paper studies and models the physics of the device, illustrates its operation, and benchmarks its performance using SPICE simulations. We show that the proposed device maintains low-voltage operation, nonreciprocity, nonvolatility, cascadability, and thermal reliability of the original ASL device. Moreover, by utilizing the deterministic switching of a magnet from the saddle point of the energy profile, the device is more efficient in terms of energy and delay and is robust to thermal fluctuations. The results of simulations show that compared to ASL devices, the proposed device achieves 21x shorter delay and 27x lower energy dissipation per bit for a 32-bit arithmetic-logic unit.
Full text available from IEEE Transactions on Electronic Devices.