This past week, both Sieun and Peter gave talks at the annual American Ceramic Society Electronic materials and applications (EMA) conference on defect formation and magnetic disorder in entropy stabilized oxides.
Defect and disorder driven dielectric properties of entropy-stabilized oxides.
Abstract: Entropy-stabilized oxides (ESO) are a solid solution of five or more binary oxides in a single lattice, stabilized by the large configurational entropy from cationic disorder. Due to their tunable chemical heterogeneity and intrinsic disorder, ESO are expected to demonstrate novel functional behavior. Point defects in oxides, however, can have a strong influence on functional properties, yet an understanding of point defects in ESO is unknown. Here we present on a theoretical and experimental investigation of point defects and disorder in (MgCoNiCuZn)O-based ESO using density functional theory (DFT) and dielectric measurements. We theoretically predicted that the thermodynamic stability of vacancies in ESO strongly depends on their nearest-neighbor configuration, indicating that the types and concentrations of defects can be tuned by the composition of cations, particularly Cu. Our calculated dielectric constant varies depending on vacancy and cation composition. To experimentally characterize these materials, we have integrated single crystalline entropy-stabilized oxide thin films into vertical capacitor devices by using MgO/SrTiO3 buffered conductive Si substrates and performed dielectric testing over a wide range of frequencies. We varied the composition of the films and observed the effect of local lattice distortion that arises from the composition of Cu on the dielectric behavior of ESO.
Magnetic Frustration Engineering Through Stereochemical Disorder in Single Crystalline Entropy-Stabilized Oxides
Abstract: A unique benefit to entropic stabilization is the increased solubility of elements, which opens a broad compositional space with subsequent local chemical and structural disorder resulting from different atomic sizes and preferred coordinations of the constituents. It is unknown, however, to what degree this structural disorder contributes to material functionalities. In the antiferromagnetic entropy-stabilized oxides studied here, we see that by tuning the concentration of local structural frustrations caused by Jahn-Teller active cations, we induce or reclaim a large degree of disorder in the magnetic lattice of the material. This effect can be utilized to tune the anisotropy and magnetic structure of the oxide to approach that of an isotropic spin glass, yet still in a single crystalline material. Our results reveal that the unique characteristics of entropy stabilized materials can be utilized to realize novel magnetism in oxide thin films.