Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News
Home » New Publication! Bulk-like dielectric and magnetic properties of sub 100 nm thick single crystal Cr2O3 films on an epitaxial oxide electrode

New Publication! Bulk-like dielectric and magnetic properties of sub 100 nm thick single crystal Cr2O3 films on an epitaxial oxide electrode

September 8, 2020 By John Heron

Abstract: The manipulation of antiferromagnetic order in magnetoelectric Cr2O3 using electric field has been of great interest due to its potential in low-power electronics. The substantial leakage and low dielectric breakdown observed in twinned Cr2O3 thin films, however, hinders its development in energy efficient spintronics. To compensate, large film thicknesses (250 nm or greater) have been employed at the expense of device scalability. Recently, epitaxial V2O3 thin film electrodes have been used to eliminate twin boundaries and significantly reduce the leakage of 300 nm thick single crystal films. Here we report the electrical endurance and magnetic properties of thin (less than 100 nm) single crystal Cr2O3 films on epitaxial V2O3 buffered Al2O3 (0001) single crystal substrates. The growth of Cr2O3 on isostructural V2O3 thin film electrodes helps eliminate the existence of twin domains in Cr2O3 films, therefore significantly reducing leakage current and increasing dielectric breakdown. 60 nm thick Cr2O3 films show bulk-like resistivity (~ 1012 Ω cm) with a breakdown voltage in the range of 150–300 MV/m. Exchange bias measurements of 30 nm thick Cr2O3 display a blocking temperature of ~ 285 K while room temperature optical second harmonic generation measurements possess the symmetry consistent with bulk magnetic order.

Full text available from Nature Scientific Reports

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook

Related

Filed Under: Publications

News

  • New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping” March 28, 2025
  • New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots” January 31, 2025
  • New Publication! “Geometric effects in the measurement of the remanent ferroelectric polarization at the nanoscale”  January 14, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots”

January 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support