Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News
Home » Sieun presents at APS March Meeting!

Sieun presents at APS March Meeting!

March 23, 2021 By Matt Webb

Sieun gave a virtual talk at the American Physical Society (APS) March Meeting last week. Congratulations! Her abstract is included below.

Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy

Ultrawide-band-gap (UWBG) semiconductors have tantalizing advantages for power electronics. Materials such as AlN/AlGaN, β-Ga2O3, and diamond have been developed for UWBG semiconducting devices, however, they are still facing challenges, such as doping asymmetry and/or inefficient thermal conduction. Rutile GeO2 (r-GeO2) has been theoretically established to have an UWBG (4.68 eV), high electron and hole mobility (289 cm2 V-1s-1 and 28 cm2 V-1s-1), high thermal conductivity (51 W m–1 K–1) and ambipolar dopability. The synthesis of r-GeO2 thin films has not been reported but is critical to enable microelectronics applications. Here, we report the growth of single-crystalline r-GeO2 thin films on R-plane sapphire substrates using molecular beam epitaxy. We control the competing reactions between the deeply metastable glass phase formation and rutile phase formation as well as absorption and desorption by utilizing (1) a buffer layer with reduced lattice misfit, and (2) the growth condition that allows the condensation of the preoxidized molecular precursor yet provides sufficient adatom mobility. The findings advance the synthesis of single-crystalline films of materials prone to glass formation and provide opportunities to realize promising UWBG semiconductors.

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook

Related

Filed Under: Conferences

News

  • New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping” March 28, 2025
  • New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots” January 31, 2025
  • New Publication! “Geometric effects in the measurement of the remanent ferroelectric polarization at the nanoscale”  January 14, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots”

January 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: [email protected]
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support