Today, Peter gave a great defense of his PhD dissertation, titled “Disorder-Engineering of Ferroic Properties“. Congratulations Peter! The Ferroelectronics Lab wishes you the very best luck in your future work!
Peter at LANL
Peter is off to Los Alamos National Laboratory for several months where he will be working with Aiping Chen at the Center for Integrated Nanotechnologies (CINT) on growth kinetics of entropy stabilized oxides.
Sieun passes candidacy exam!
Congratulations to Sieun for passing her candidacy exam on September 4th.
Doping is an essential step in semiconductor technology to achieve the desired type and level of electrical conductivity. Thus, predicting both n-type or p-type dopability of a material is a prerequisite to exploit the material for electronic application. First-principles calculations are a powerful tool to understand point-defect properties since experimental studies to identify and characterize defects at the atomic scale are challenging. To predict n-type and p-type dopability of an unexplored wide bandgap material, we investigated the thermal stability and charge state of various intentional dopants, the issues regarding carrier localization, and charge compensation from native defects.
Peter runs an outreach event at Forsythe Middle School
Peter and other members of the UM MSE graduate student council organized and ran an outreach event at local Forsythe Middle School. There, volunteers taught a class on metallurgy and materials science, demo-ing metal casting and using our portable SEM to look at material microstructures. They presented to over 200 students over the course of 2 days, who had a great time learning about materials science
This event was sponsored in part by Joyworks Studio, who donated the pewter for casting and allowed us to give students a part to take home that they cast themselves.
Betsy back from her summer internship
This summer Betsy worked at Steelcase in Grand Rapids, Michigan. Her role was cross functional between the Materials Innovation Exploration team and Product Development Engineering to help new product development teams understand the properties and potential applications of new materials. The primary focus was on understanding the technology behind chromic textiles, particularly photochromic, thermochromic, and electrochromic textiles. These textiles have the potential to store information, give user feedback and signal group functions. Additionally, Betsy worked on a project to establish updated sustainability standards for design and engineering in future product development.