Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News

New publication! – “Strain-Mediated Magnetization Reversal Through Spin-Transfer Torque”

July 20, 2017 By John Heron

New publication!- N. Kani, J. T. Heron, A. Naeemi, IEEE Trans. Mag. Accepted (2017).

Abstract:
Recent experiments have shown the ability to introduce an anisotropy energy to the energy landscape of a thin-film nanomagnet through the use of mechanical strain. Assuming this strain-induced anisotropy is large enough, the low-energy state of the nanomagnet is altered and can be used to initialize the magnetization along a given axis. Utilizing this effect, we propose a more energy efficient method of nanomagnet reversal through spin-transfer torque (STT). This is accomplished by first initializing the magnetization to a high-energy state, and then applying a short current pulse to nudge the magnetization in the appropriate energy basin. Using extensive numerical simulations, we qualitatively analyze this type of reversal and find the optimal parameters for reliable functionality while in the presence of thermal noise. We demonstrate that despite negating the initial portion of nominal STT reversal, where the STT must fight against the damping torque of the initial energy-basin, the magnitude of spin current required for our proposed strain-mediated reversal is equivalent to the nominal case. However, the strain-meditated reversal is beneficial by minimizing the spin-current pulsewidth necessary for reliable operation allowing for large energy savings. Assuming the strain-anisotropy is significantly larger than the nanomagnet’s internal free-axis anisotropy, strain-mediated reversals offer a 10 energy reduction over nominal STT reversals.

The full manuscript is available from IEEE Transactions on Magnetics.

Filed Under: Publications

  • « Previous Page
  • 1
  • …
  • 9
  • 10
  • 11

News

  • Intel Awards John T. Heron and lab with Outstanding Researcher Award! July 31, 2025
  • New Publication! “Investigating Vibrational Modes in High Entropy Oxides using Electron Energy Loss Spectroscopy” July 31, 2025
  • New Publication! “Endotaxial Stabilization of 2D 1T-TaS2 Charge Density Waves via In-Situ Electrical Current Biasing” July 31, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

Intel Awards John T. Heron and lab with Outstanding Researcher Award!

July 31, 2025 By Avery-Ryan Ansbro

New Publication! “Investigating Vibrational Modes in High Entropy Oxides using Electron Energy Loss Spectroscopy”

July 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support

 

Loading Comments...