Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News

New Publication! “Magnetoelectrics and multiferroics: Materials and opportunities for energy-efficient spin-based memory and logic”

October 30, 2021 By Matt Webb

Abstract:

With the explosion of Internet traffic, the rise of large data centers, and smart technologies on the horizon, forecasts of the global energy consumption from information, and communications technologies are expected to rise from ~ 8% in 2020 to ~ 21% in 2030. The future demand will challenge the supply of electricity and has technology makers looking for ways to improve the efficiency of information and communication devices. In recent years, advances in magnetoelectric and multiferroic materials now provide the basis for nonvolatile spin-based logic and memory elements that have a projected energy efficiency orders of magnitude larger than the complementary metal-oxide semiconductor transistor. The possibilities are exciting, yet significant challenges remain. This article summarizes key materials, recent advancements, and current challenges in electric-field-controlled magnetism for realizing these potentially transformational devices. A perspective and potential considerations are given.

Full text available from MRS Bulletin

Filed Under: Publications

New Publication! “A Narrowband Spintronic Terahertz Emitter Based on Magnetoelastic Heterostructures”

October 8, 2021 By Matt Webb

Abstract:

Narrowband terahertz (THz) radiation is crucial for high-resolution spectral identification, but a narrowband THz source driven by a femtosecond (fs) laser has remained scarce. Here, it is computationally predicted that a metal/dielectric/magnetoelastic heterostructure enables converting a fs laser pulse into a multicycle THz pulse with a narrow linewidth down to ∼1.5 GHz, which is in contrast to the single-cycle, broadband THz pulse from the existing fs-laser-excited emitters. It is shown that such narrowband THz pulse originates from the excitation and long-distance transport of THz spin waves in the magnetoelastic film, which can be enabled by a short strain pulse obtained from fs laser irradiation of the metal film when the thicknesses of the metal and magnetoelastic films both fall into a specific range. These results therefore reveal an approach to achieving optical generation of narrowband THz pulse based on heterostructure design, which also has implications in the design of THz magnonic devices.

Full text available from ACS Publications

Filed Under: Publications

New Publication! “Switching with ions”

September 2, 2021 By Matt Webb

Abstract:

“Solid-state hydrogen gating of a ferrimagnetic metal enables independent reversal of Néel and magnetization vectors by an electric field.”

Full text available from: Nature Nanotechnology

Filed Under: Publications

New Publication! “Memristors Based on (Zr, Hf, Nb, Ta, Mo, W) High-Entropy Oxides”

September 2, 2021 By Matt Webb

Abstract:

“Memristors have emerged as transformative devices to enable neuromorphic and in-memory computing, where success requires the identification and development of materials that can overcome challenges in retention and device variability. Here, high-entropy oxide composed of Zr, Hf, Nb, Ta, Mo, and W oxides is first demonstrated as a switching material for valence change memory. This multielement oxide material provides uniform distribution and higher concentration of oxygen vacancies, limiting the stochastic behavior in resistive switching. (Zr, Hf, Nb, Ta, Mo, W) high-entropy-oxide-based memristors manifest the “cocktail effect,” exhibiting comparable retention with HfO2– or Ta2O5-based memristors while also demonstrating the gradual conductance modulation observed in WO3-based memristors. The electrical characterization of these high-entropy-oxide-based memristors demonstrates forming-free operation, low device and cycle variability, gradual conductance modulation, 6-bit operation, and long retention which are promising for neuromorphic applications.”

Full text available from: Advanced Electronic Materials

Filed Under: Publications

New Publication! “Toward the predictive discovery of ambipolarly dopable ultra-wide-band-gap semiconductors: The case of rutile GeO2”

July 1, 2021 By Matt Webb

ABSTRACT

Ultrawide-band-gap (UWBG) semiconductors are promising for fast, compact, and energy-efficient power-electronics devices. Their wider band gaps result in higher breakdown electric fields that enable high-power switching with a lower energy loss. Yet, the leading UWBG semiconductors suffer from intrinsic materials’ limitations with regard to their doping asymmetry that impedes their adoption in CMOS technology. Improvements in the ambipolar doping of UWBG materials will enable a wider range of applications in power electronics as well as deep-UV optoelectronics. These advances can be accomplished through theoretical insights on the limitations of current UWBG materials coupled with the computational prediction and experimental demonstration of alternative UWBG semiconductor materials with improved doping and transport properties. As an example, we discuss the case of rutile GeO2 (r-GeO2), a water-insoluble GeO2 polytype, which is theoretically predicted to combine an ultra-wide gap with ambipolar dopability, high carrier mobilities, and a higher thermal conductivity than β-Ga2O3. The subsequent realization of single-crystalline r-GeO2 thin films by molecular beam epitaxy provides the opportunity to realize r-GeO2 for electronic applications. Future efforts toward the predictive discovery and design of new UWBG semiconductors include advances in first-principles theory and high-performance computing software, as well as the demonstration of controlled doping in high-quality thin films with lower dislocation densities and optimized film properties.

Full text available from Applied Physics Letters 

Filed Under: Publications

  • « Previous Page
  • 1
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • …
  • 10
  • Next Page »

News

  • New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping” March 28, 2025
  • New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots” January 31, 2025
  • New Publication! “Geometric effects in the measurement of the remanent ferroelectric polarization at the nanoscale”  January 14, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots”

January 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: [email protected]
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support