Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News
Home » New Publication! ” Local structure maturation in high entropy oxide (Mg,Co,Ni,Cu,Zn)1-x(Cr,Mn)xO thin films”

New Publication! ” Local structure maturation in high entropy oxide (Mg,Co,Ni,Cu,Zn)1-x(Cr,Mn)xO thin films”

October 7, 2024 By Avery-Ryan Ansbro

Abstract: High entropy oxides (HEOs) have garnered much interest due to their available high degree of tunability. Here, we study the local structure of (MgNiCuCoZn)0.167(MnCr)0.083O, a composition based on the parent HEO (MgNiCuCoZn)0.2O. We synthesized a series of thin films via pulsed laser deposition at incremental oxygen partial pressures. X-ray diffraction shows lattice parameters to decrease with increased pO2 pressures until the onset of phase separation. X-ray absorption fine structure shows that specific atomic species in the composition dictate the global structure of the material as Cr, Co, and Mn shift to energetically favorable coordination with increasing pressure. Transmission electron microscopy analysis on a lower-pressure sample exhibits a rock salt structure, but the higher-pressure sample reveals reflections reminiscent of the spinel structure. In all, these findings give a more complete picture of how (MgNiCuCoZn)0.167(MnCr)0.083O forms with varying initial conditions and advances fundamental knowledge of cation behavior in high entropy oxides.

Full text available at The Journal of the American Ceramic Society

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook

Related

Filed Under: Publications Tagged With: high entropy, Matt Webb, publications

News

  • New Publication! “Signatures of quantum spin liquid state and unconventional transport in thin film TbInO3” October 31, 2025
  • Tony Chiang Defends His Thesis, Earning a PhD! Congratulations Tony! August 19, 2025
  • New Publication! Sub-100 Ω/□ sheet resistance of GaN HEMT with ScAlN barrier August 10, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Signatures of quantum spin liquid state and unconventional transport in thin film TbInO3”

October 31, 2025 By Avery-Ryan Ansbro

Tony Chiang Defends His Thesis, Earning a PhD! Congratulations Tony!

August 19, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support