Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News
Home » New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

Abstract: Spin pumping, a central phenomenon in spintronics used to source pure spin currents, is best understood in collinear magnetic multilayers. There is not yet a unified Landau-Lifshitz-Gilbert (LLG) theory that captures the fieldlike and dampinglike torques in a generic noncollinear magnetic multilayer. Here, we theoretically expand the LLG phenomenology to incorporate both dynamic fieldlike and dampinglike torques arising from spin pumping within noncollinear magnetic materials. We find that often overlooked dynamic fieldlike torques are capable of unveiling inversion asymmetries present in magnetic multilayers. Consequently, spin pumping can be used to lift the spectral degeneracy between various magnon modes in noncollinear antiferromagnets. We experimentally confirm this magnon-magnon interaction in a synthetic antiferromagnetic tetralayer, which has highly noncollinear magnetization configurations when under the influence of an external field. Thus, we demonstrate how spin pumping can facilitate a magnon-magnon interaction, significantly expanding how magnonic interactions can be engineered into antiferromagnets and magnetic metamaterials.

Read more at Physics Review Applied

Share this:

  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook

Related

Filed Under: Publications Tagged With: John T. Heron, magnetism, Peter Meisenheimer, publications

News

  • Intel Awards John T. Heron and lab with Outstanding Researcher Award! July 31, 2025
  • New Publication! “Investigating Vibrational Modes in High Entropy Oxides using Electron Energy Loss Spectroscopy” July 31, 2025
  • New Publication! “Endotaxial Stabilization of 2D 1T-TaS2 Charge Density Waves via In-Situ Electrical Current Biasing” July 31, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

Intel Awards John T. Heron and lab with Outstanding Researcher Award!

July 31, 2025 By Avery-Ryan Ansbro

New Publication! “Investigating Vibrational Modes in High Entropy Oxides using Electron Energy Loss Spectroscopy”

July 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support