Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News

New Publication! “Chemically-Disordered Transparent Conductive Perovskites With High Crystalline Fidelity”

July 18, 2025 By Avery-Ryan Ansbro

Abstract: This manuscript presents a working model linking chemical disorder and transport properties in correlated-electron perovskites with high-entropy formulations and a framework to actively design them. This work demonstrates this new learning in epitaxial Srx(Ti,Cr,Nb,Mo,W)O3 thin films that exhibit exceptional crystalline fidelity despite a diverse chemical formulation where most B-site species are highly misfit with respect to valence and radius. X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm a unique combination of chemical disorder and structural perfection in thin and thick epitaxial layers. This combination produces an optical transparency window that surpasses that of the constituent end-members in the UV and IR, while maintaining relatively low electrical resistivity. This work addresses the computational challenges of modeling such systems and investigate short-range ordering using cluster expansion. These results showcase that unusual d-metal combinations access an expanded property design space that is predictable using end-member characteristics and their interactions– though unavailable to them– thus offering performance advances in optical, high-frequency, spintronic, and quantum devices.

Read more at Advanced Science

Filed Under: Publications Tagged With: high entropy, John T. Heron, Pat Kezer, perovskite, publications

New publication! “Achieving Semi-Metallic Conduction in Al-Rich AlGaN: Evidence of Mott Transition”

June 10, 2024 By Avery-Ryan Ansbro

Abstract: The development of high performance wide-bandgap AlGaN channel transistors with high current densities and reduced Ohmic losses necessitates extremely highly doped, high Al content AlGaN epilayers for regrown source/drain contact regions. In this work, we demonstrate the achievement of semi-metallic conductivity in silicon (Si) doped N-polar Al0.6Ga0.4N grown on C-face 4H-SiC substrates by molecular beam epitaxy. Under optimized conditions, the AlGaN epilayer shows smooth surface morphology and a narrow photoluminescence spectral linewidth, without the presence of any secondary peaks. A favorable growth window is identified wherein the free electron concentration reaches as high as ∼1.8 × 1020 cm−3 as obtained from Hall measurements, with a high mobility of 34 cm2/V·s, leading to a room temperature resistivity of only 1 mΩ·cm. Temperature-dependent Hall measurements show that the electron concentration, mobility, and sheet resistance do not depend on temperature, clearly indicating dopant Mott transition to a semi-metallic state, wherein the activation energy (Ea) falls to 0 meV at this high value of Si doping for the AlGaN films. This achievement of semi-metallic conductivity in Si doped N-polar high Al content AlGaN is instrumental for advancing ultrawide bandgap electronic and optoelectronic devices.

Full text available from Applied Physics Letters

Filed Under: Publications Tagged With: epitaxy, metals, Pat Kezer, transistor

New Publication! “Composite Spin Hall Conductivity from Non-collinear Antiferromagnetic Order”

May 4, 2023 By Matt Webb

Abstract: Non-collinear antiferromagnets are an exciting new platform for studying intrinsic spin Hall effects, phenomena that arise from the materials’ band structure, Berry phase curvature, and linear , the spin Hall conductivities in the non-collinear state exhibit the predicted orientation-dependent anisotropy, opening the possibility for new devices with selectable spin polarization. O ur work demonstrates symmetry control through the magnetic lattice as a pathway to tailored functionality in magnetoelectronic systems.

Full text available from Advanced Materials.

Filed Under: Publications Tagged With: magnetism, Nguyen Vu, Pat Kezer, Peter Meisenheimer, Steve Novakov

News

  • New Publication! “Chemically-Disordered Transparent Conductive Perovskites With High Crystalline Fidelity” July 18, 2025
  • New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping” March 28, 2025
  • New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots” January 31, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Chemically-Disordered Transparent Conductive Perovskites With High Crystalline Fidelity”

July 18, 2025 By Avery-Ryan Ansbro

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support