Abstract: Quantum spin liquids, where the frustrated magnetic ground state hosts highly entangled spins resisting long-range order to 0 K, are exotic quantum magnets proximate to unconventional superconductivity and candidate platforms for topological quantum computing. Although several quantum spin liquid material candidates have been identified, thin films crucial for device fabrication and further tuning of properties remain elusive. Recently, hexagonal TbInO3 has emerged as a quantum spin liquid candidate which also hosts improper ferroelectricity and exotic high-temperature carrier transport. Here, we synthesize thin films of TbInO3 and characterize their magnetic and electronic properties. Our films present a highly frustrated magnetic ground state without long-range order to 0.4 K, consistent with bulk crystals. We further reveal a rich ferroelectric domain structure and unconventional non-local transport near room temperature, suggesting hexagonal TbInO3 as a promising candidate for realizing exotic magnetic and transport phenomena in epitaxial heterostructures.
Read more at Nature Communications