Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News

New Publication! “Endotaxial Stabilization of 2D 1T-TaS2 Charge Density Waves via In-Situ Electrical Current Biasing”

July 31, 2025 By Avery-Ryan Ansbro

Abstract: 1T-TaS2 is a layered, two-dimensional material which is host to several charge density wave (CDW) states with three distinct phases: an insulating commensurate (C) phase and the metallic nearly-commensurate (NC) and incommensurate (IC) phases [1-3]. CDW phase selection can be achieved via biasing, making 1T-TaS2 an attractive candidate for device applications [4-6]. The insulating C phase, however, only forms below ∼180 K [1, 7] for bulk 1T-TaS2 and even lower for thin flakes [5], leaving the metal-insulator transition unreachable for room temperature devices.

Recent work has shown endotaxial heterostructures of 2H-TaS2/1T-TaS2 can stabilize 2D C-CDW states in the twinned commensurate (tC) phase at room temperature with a single metal-insulator transition at ∼350 K [3, 8], paving the way for devices operable at room temperature. Previously, this phase has been realized by directly heating 1T-TaS2 past its polytype transition for a few minutes and then cooling it back to room temperature [3, 8].

Here, we show that the tC-CDW state can be synthesized electronically via current. Using an in-house built transmission electron microscopy (TEM) biasing holder, we can source current through exfoliated 1T-TaS2 flakes allowing us to drive and observe the polytype conversion in both real and reciprocal space in-situ. For sufficiently thin flakes, a current of around 210 µA/µm2 is enough to switch from the NC phase to the IC phase and back again. Upon sourcing higher currents of around 750 µA/µm2 the normal NC to IC transition is observed before seeing polytype conversion occur. Holding at this current for around 30 seconds longer is enough to stabilize the tC-CDW phase at room temperature. Similarly to the NC-IC transition, we can switch between the tC and IC phases of this new endotaxial structure by sourcing current through the sample. Using in-situ TEM we can correlate a polytype transition and the associated tC-CDW formation through electrical signatures. Further, this conversion is more localized compared to heating the sample in bulk.

In summary, we report current driven stabilization of 2D CDWs in 1T-TaS2 in and characterize the electronic switching of the NC to IC transition via in-situ TEM.

Read more at Microscopy and Microanalysis

Filed Under: Publications Tagged With: 2D material, device, John T. Heron, publications, Tony Chiang

New Publication! “Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization”

April 18, 2022 By Matt Webb

Abstract: Monolayer hexagonal boron nitride (hBN) has been widely considered as a fundamental building block for two–dimensional (2D) heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, we propose and further demonstrate a hBN/graphene (hBN/G) interface–mediated growth process for the controlled synthesis of high–quality monolayer hBN. We discover that the in–plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moiré superlattice consistent with single–domain hBN, aligned to the underlying graphene lattice. Furthermore, we identify that the deep–ultraviolet emission at 6.12 eV stems from the 1s–exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer–scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.

Full text available from Advanced Materials

Filed Under: Publications Tagged With: 2D material, Nguyen Vu, Synthesis

New Publication! “Two-dimensional charge order stabilized in clean polytype heterostructures”

January 21, 2022 By Matt Webb

Abstract

Compelling evidence suggests distinct correlated electron behavior may exist only in clean 2D materials such as 1T-TaS2. Unfortunately, experiment and theory suggest that extrinsic disorder in free standing 2D layers disrupts correlation-driven quantum behavior. Here we demonstrate a route to realizing fragile 2D quantum states through endotaxial polytype engineering of van der Waals materials. The true isolation of 2D charge density waves (CDWs) between metallic layers stabilizes commensurate long-range order and lifts the coupling between neighboring CDW layers to restore mirror symmetries via interlayer CDW twinning. The twinned-commensurate charge density wave (tC-CDW) reported herein has a single metal–insulator phase transition at ~350 K as measured structurally and electronically. Fast in-situ transmission electron microscopy and scanned nanobeam diffraction map the formation of tC-CDWs. This work introduces endotaxial polytype engineering of van der Waals materials to access latent 2D ground states distinct from conventional 2D fabrication.

Full text available from nature communications

Filed Under: Publications Tagged With: 2D material, Nguyen Vu, Steve Novakov

News

  • New Publication! “Signatures of quantum spin liquid state and unconventional transport in thin film TbInO3” October 31, 2025
  • Tony Chiang Defends His Thesis, Earning a PhD! Congratulations Tony! August 19, 2025
  • New Publication! Sub-100 Ω/□ sheet resistance of GaN HEMT with ScAlN barrier August 10, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Signatures of quantum spin liquid state and unconventional transport in thin film TbInO3”

October 31, 2025 By Avery-Ryan Ansbro

Tony Chiang Defends His Thesis, Earning a PhD! Congratulations Tony!

August 19, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: jtheron@umich.edu
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support