Ferroelectronics Lab

Understanding and utilizing non-volatile properties of materials

  • About the Lab
  • People
  • Research
  • Publications
  • Support
  • Facilities
  • News

New Publication! “Germanium dioxide: A new rutile substrate for epitaxial film growth”

September 1, 2022 By Matt Webb

Abstract: Rutile compounds have exotic functional properties that can be applied for various electronic applications; however, the limited availability of epitaxial substrates has restricted the study of rutile thin films to a limited range of lattice parameters. Here, rutile GeO2 is demonstrated as a new rutile substrate with lattice parameters of 𝑎=4.398 Å and 𝑐=2.863 Å. Rutile GeO2 single crystals up to 4 mm in size are grown by the flux method. X-ray diffraction reveals high crystallinity with a rocking curve having a full width half-maximum of 0.0572°. After mechanical polishing, a surface roughness of less than 0.1 nm was obtained, and reflection high-energy electron diffraction shows a crystalline surface. Finally, epitaxial growth of (110)-oriented TiO2 thin films on GeO2 substrates was demonstrated using molecular beam epitaxy. Templated by rutile GeO2 substrates, our findings open the possibility of stabilizing new rutile thin films and strain states for the tuning of physical properties.

Full text available from Journal of Vacuum Science & Technology A

Filed Under: Publications Tagged With: Sieun Chae, Synthesis, thin film

New Publication! “Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization”

April 18, 2022 By Matt Webb

Abstract: Monolayer hexagonal boron nitride (hBN) has been widely considered as a fundamental building block for two–dimensional (2D) heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, we propose and further demonstrate a hBN/graphene (hBN/G) interface–mediated growth process for the controlled synthesis of high–quality monolayer hBN. We discover that the in–plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moiré superlattice consistent with single–domain hBN, aligned to the underlying graphene lattice. Furthermore, we identify that the deep–ultraviolet emission at 6.12 eV stems from the 1s–exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer–scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.

Full text available from Advanced Materials

Filed Under: Publications Tagged With: 2D material, Nguyen Vu, Synthesis

News

  • New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping” March 28, 2025
  • New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots” January 31, 2025
  • New Publication! “Geometric effects in the measurement of the remanent ferroelectric polarization at the nanoscale”  January 14, 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About

Our research is at the intersection of multiple disciplines, drawing on principles and methodologies from materials science, chemistry, physics, and electrical engineering. Our mission is to pioneer … Read More

News

New Publication! “Engineering antiferromagnetic magnon bands through interlayer spin pumping”

March 28, 2025 By Avery-Ryan Ansbro

New Publication! “Polydopamine-Assisted Electroless Deposition of Magnetic Functional Coatings for 3D-Printed Microrobots”

January 31, 2025 By Avery-Ryan Ansbro

Contact

Ferroelectronics Lab
Address: 2030 H.H. Dow

T: (734) 763-6914
E: [email protected]
  • Email

Ferroelectronics Lab · Copyright © 2025 · Website by Super Heron Support