Abstract: 1T-TaS2 is a layered, two-dimensional material which is host to several charge density wave (CDW) states with three distinct phases: an insulating commensurate (C) phase and the metallic nearly-commensurate (NC) and incommensurate (IC) phases [1-3]. CDW phase selection can be achieved via biasing, making 1T-TaS2 an attractive candidate for device applications [4-6]. The insulating C phase, however, only forms below ∼180 K [1, 7] for bulk 1T-TaS2 and even lower for thin flakes [5], leaving the metal-insulator transition unreachable for room temperature devices.
Recent work has shown endotaxial heterostructures of 2H-TaS2/1T-TaS2 can stabilize 2D C-CDW states in the twinned commensurate (tC) phase at room temperature with a single metal-insulator transition at ∼350 K [3, 8], paving the way for devices operable at room temperature. Previously, this phase has been realized by directly heating 1T-TaS2 past its polytype transition for a few minutes and then cooling it back to room temperature [3, 8].
Here, we show that the tC-CDW state can be synthesized electronically via current. Using an in-house built transmission electron microscopy (TEM) biasing holder, we can source current through exfoliated 1T-TaS2 flakes allowing us to drive and observe the polytype conversion in both real and reciprocal space in-situ. For sufficiently thin flakes, a current of around 210 µA/µm2 is enough to switch from the NC phase to the IC phase and back again. Upon sourcing higher currents of around 750 µA/µm2 the normal NC to IC transition is observed before seeing polytype conversion occur. Holding at this current for around 30 seconds longer is enough to stabilize the tC-CDW phase at room temperature. Similarly to the NC-IC transition, we can switch between the tC and IC phases of this new endotaxial structure by sourcing current through the sample. Using in-situ TEM we can correlate a polytype transition and the associated tC-CDW formation through electrical signatures. Further, this conversion is more localized compared to heating the sample in bulk.
In summary, we report current driven stabilization of 2D CDWs in 1T-TaS2 in and characterize the electronic switching of the NC to IC transition via in-situ TEM.
Read more at Microscopy and Microanalysis