Abstract: This manuscript presents a working model linking chemical disorder and transport properties in correlated-electron perovskites with high-entropy formulations and a framework to actively design them. This work demonstrates this new learning in epitaxial Srx(Ti,Cr,Nb,Mo,W)O3 thin films that exhibit exceptional crystalline fidelity despite a diverse chemical formulation where most B-site species are highly misfit with respect to valence and radius. X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm a unique combination of chemical disorder and structural perfection in thin and thick epitaxial layers. This combination produces an optical transparency window that surpasses that of the constituent end-members in the UV and IR, while maintaining relatively low electrical resistivity. This work addresses the computational challenges of modeling such systems and investigate short-range ordering using cluster expansion. These results showcase that unusual d-metal combinations access an expanded property design space that is predictable using end-member characteristics and their interactions– though unavailable to them– thus offering performance advances in optical, high-frequency, spintronic, and quantum devices.
Read more at Advanced Science